3. Given: NPVR is a parallelogram

Prove: $\triangle NWO \sim \triangle SWT$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Given: $\overline{AC} = \overline{AE}$
 $\angle CBD = \angle EFD$

Prove: $\triangle BCD \sim \triangle FED$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12. Given: \(\overline{SP} \) is the altitude from \(S \) to \(\overline{NR} \)
\(\overline{RT} \) is the altitude from \(R \) to \(\overline{NS} \)
Prove: \(\triangle NRT \sim \triangle NSP \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
</table>
| \(\overline{SP} \) \(\perp \overline{NR} \) | \(\triangle NRT \sim \triangle NSP \)
\(\overline{RT} \) \(\perp \overline{NS} \) |

16. Indicate whether the statement is true Always, Sometimes, or Never (A, S, or N)

a. If two triangles are similar, then they are congruent.

b. If two triangles are congruent, then they are similar.

c. An obtuse triangle is similar to an acute triangle.

d. Two right triangles are similar.

e. Two equilateral polygons are similar.

f. Two equilateral triangles are similar.

g. Two rectangles are similar if neither is a square.
19.
Given: Figure as shown

a. Is $\triangle PQT \sim \triangle PRS$? Justify your reasoning.

b. Is \overline{QT} parallel to \overline{RS}? Justify your reasoning.

22.
If two of the six triangles below are selected at random, what is the probability that the two triangles are similar?