8.
\[m\angle P + m\angle R < 180 \]

\[PQ < QR \]

Write an inequality to describe the restrictions of \(x \).

\[
\begin{align*}
(7x - 18)^\circ & \quad (4x)^\circ \\
P & \quad Q \\
\end{align*}
\]

9.

Given:
- \(OP = RS \)
- \(KO = KS \)
- \(M \) is the midpoint of \(\overline{OK} \)
- \(T \) is the midpoint of \(\overline{KS} \)

Prove:
- \(MP = TR \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OP = RS)</td>
<td>(KO = KS)</td>
</tr>
<tr>
<td>(M) is the midpoint of (\overline{OK})</td>
<td>(T) is the midpoint of (\overline{KS})</td>
</tr>
</tbody>
</table>
11. Is \(\triangle ABC \) isosceles?

![Triangle ABC with sides labeled](image)

12. Given:
- \(\odot Q \)
- \(PS \perp SR \)
- \(m \angle P = 36^\circ \)

Find:
- a. \(m \angle PSQ \)
- b. \(m \angle R \)

Remember - we haven't yet proved that the sum of the measure of the angles of a \(\triangle \) is 180°!!
14. Prove that the median to the base of an isosceles Δ bisects the vertex ∠.

Given:

Prove:

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR ≅ ST</td>
<td></td>
</tr>
<tr>
<td>NP ≅ VT</td>
<td></td>
</tr>
<tr>
<td>∠P ≅ ∠T</td>
<td></td>
</tr>
</tbody>
</table>

16. Given: PR = ST
 NP = VT
 ∠P = ∠T

Prove: ΔWRS is isosceles

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGRAM</td>
<td></td>
</tr>
</tbody>
</table>
20. **Given:**

- A is the vertex of an isosceles \triangle
- The number of degrees in $\angle B$ is twice the number of centimeters in BC
- The number of degrees in $\angle C$ is three times the number of centimeters in AB

$m\angle B = x + 6$

$m\angle C = 2x - 54$

Find: The perimeter of $\triangle ABC$

22. **Given:**

- $FG = JH$
- $\angle FGH = \angle JHG$

Prove: $\triangle FKJ$ is isosceles
25.

Given: \(\triangle FED \) is equilateral

Find: \(x, y \), and \(m \angle F \)