1.

Given: \(\overline{BA} \perp \overline{AT} \)

Find: \(m \angle MAT \)

2.

A certain angle is 39° less than 2 times its complement. Find its supplement.

3.

The measure of the supplement of an angle exceeds three times the complement by 40°. Find the supplement.
4. Find $m \angle ABC$

![Diagram with points A, B, C, D, E and expressions for alternate interior angles]

5. \(\overline{UL} \perp \overline{UK} \). $m \angle 1 = (x^2 + 18)^\circ$ and $m \angle 2 = (x + 30)^\circ$. Find all possible values for $m \angle 1$.

![Diagram with points U, L, E, K and angles 1 and 2]
6.

Given: \(\angle 1 = \angle 2 \)
BG bis. \(\angle ABF \)
CE bis. \(\angle DCF \)

Prove: \(\angle 3 = \angle 4 \)

Statements

Reasons
7.

Given: \(\angle 1 = \angle 2 \)

PE bis. \(\angle APN \)

NE bis. \(\angle ANP \)

Prove: \(\angle XPE \cong \angle ENY \)
8.

Given: $KY \perp YL$

$\angle 2$ is supplementary to $\angle 3$

Prove: $\angle 1$ is complementary to $\angle 4$

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$KY \perp YL$</td>
<td></td>
</tr>
<tr>
<td>$\angle 2$ is supplementary to $\angle 3$</td>
<td></td>
</tr>
<tr>
<td>$\angle 1$ is complementary to $\angle 4$</td>
<td></td>
</tr>
</tbody>
</table>

[Diagram of triangle with labeled angles]
9.

Given:
- BD bisects \(\angle ABC \)
- CD bisects \(\angle ACB \)
- \(\angle ABC = \angle ACB \)
- \(\angle 1 \) is complementary to \(\angle 3 \)
- \(\angle 6 \) is complementary to \(\angle 4 \)

Prove: \(\angle 3 = \angle 4 \)