Theorem 1 - If two angles are right angles, then they are congruent.

Given: \(\angle A \) is a right \(\angle \)
\(\angle B \) is a right \(\angle \)

Prove: \(\angle A \cong \angle B \)
Theorem 2 - If two angles are straight angles, then they are congruent.

Given:
- ∠ABC is a straight ∠
- ∠DEF is a straight ∠

Prove:
- ∠ABC ≅ ∠DEF

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D E F</td>
<td></td>
</tr>
</tbody>
</table>
Theorem 4 - If angles are supplementary to the same angle, then they are congruent.

Given:
- \(\angle A \) is supp. to \(\angle X \)
- \(\angle B \) is supp. to \(\angle X \)

Prove: \(\angle A \cong \angle B \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\angle A) is supp. to (\angle X)</td>
<td>(\angle A) is supp. to (\angle X)</td>
</tr>
<tr>
<td>(\angle B) is supp. to (\angle X)</td>
<td>(\angle B) is supp. to (\angle X)</td>
</tr>
<tr>
<td>(\angle A \cong \angle B)</td>
<td>(\angle A \cong \angle B)</td>
</tr>
</tbody>
</table>
Theorem 5 - If \(\angle s \) are supplementary to \(\angle s \), then they are equal.

Given: \(\angle AYZ = \angle BYX \)

Prove: \(\angle 1 = \angle 2 \)
Theorem 6 - If angles are complementary to the same angle, then they are congruent.

Given: \(\angle A \) is compl. to \(\angle X \)
\(\angle B \) is compl. to \(\angle X \)

Prove: \(\angle A = \angle B \)
Theorem 7 - If \(\angle \)s are complementary to \(\angle \)s, then they are \(\cong \).

Given:
- \(YS \perp XZ \)
- \(\angle 3 = \angle 4 \)

Prove: \(\angle 1 = \angle 2 \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(YS \perp XZ)</td>
<td>Theorem 7</td>
</tr>
<tr>
<td>(\angle 3 = \angle 4)</td>
<td>Given</td>
</tr>
<tr>
<td>(\angle 1 = \angle 2)</td>
<td>?</td>
</tr>
</tbody>
</table>
Theorem 8 - If a segment is added to two congruent segments, then the sums are congruent.

(The Addition Property of Congruent Segments - Version 1).

Given: \(AB = CD \)

Prove: \(AC = BD \)

Statements | Reasons
Theorem 9 - If an angle is added to two \(\cong \) angles, then the sums are \(\cong \) (The Addition Property of \(\cong \) s - Version 1).

Given: \(\angle EFJ = \angle GFH \)

Prove: \(\angle EFH = \angle GFJ \)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
</table>

\[\begin{array}{c}
\text{F} \\
\text{E} \\
\text{J} \\
\text{H} \\
\text{G}
\end{array} \]
Theorem 10 - If \(\overline{AB} \cong \overline{DC} \), \(\overline{AX} \cong \overline{YC} \), \(\overline{XB} \cong \overline{DY} \), the resulting segments are \(\overline{AB} \cong \overline{DC} \).

Given:

- \(\overline{AX} \cong \overline{YC} \)
- \(\overline{XB} \cong \overline{DY} \)

Prove:

- \(\overline{AB} \cong \overline{DC} \)

Statements

<table>
<thead>
<tr>
<th>Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{AX} \cong \overline{YC})</td>
</tr>
<tr>
<td>(\overline{XB} \cong \overline{DY})</td>
</tr>
</tbody>
</table>

Reasons
Theorem 11 - If \(\cong \) angles are added to \(\cong \) angles, the resulting angles are \(\cong \) (The Addition Property of \(\cong \)s - Version 2).

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
</table>
| **Given:** |∠HGI \(\cong \) ∠HJI
∠IGJ \(\cong \) ∠IJG |
| **Prove:** |∠HGJ \(\cong \) ∠HJG |

[Diagram showing triangles HGI, IGI, and HJI with points H, G, I, J, and connections between them.]
Theorem 12 - If an angle is subtracted from two \(\cong\) angles, then the resulting \(\cong\)s are \(\cong\) (The Subtraction Property of \(\cong\)s - Version 1).

Given: \(\angle EFH = \angle GFJ\)

Prove: \(\angle EFJ = \angle GFH\)

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Diagram of angles E, F, G, J, H, showing the relationship between \(\angle EFH\) and \(\angle GFJ\).]
Theorem 13 - If \(\angle s \) are subtracted from \(\angle s \) the resulting \(\angle s \) are =
(The Subtraction Property of \(\angle s \) - Version 2)

Given: \(\angle 1 = \angle 2 \)
\(\angle ABC = \angle XYZ \)

Prove: \(\angle 3 = \angle 4 \)
Theorem 14 - If angles are \cong, their like multiples are \cong (Multiplication Property of \cong's).

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\angle 1 = \angle 2$</td>
<td>Theorem 14</td>
</tr>
<tr>
<td>\overline{BD} bisects $\angle ABC$</td>
<td></td>
</tr>
<tr>
<td>\overline{YW} bisects $\angle XYZ$</td>
<td></td>
</tr>
<tr>
<td>$\angle ABC = \angle XYZ$</td>
<td></td>
</tr>
</tbody>
</table>
Theorem 15 - If segments are \cong, their like divisions are \cong (Division Property of \cong Segments).

Given:
\[
\overline{AB} = \overline{XY}
\]
M & N are midpoints

Prove:
\[
\overline{AM} = \overline{XN}
\]

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
</table>

\[\overline{AB} = \overline{XY}\]

\[\text{M & N are midpoints}\]

\[\overline{AM} = \overline{XN}\]
Theorem 16 - If segments (or \(\angle\)s) are = to the same segment (or \(\angle\)), they are = to each other (Transitive Property of = Segments or \(\angle\)s - Version 1).

<table>
<thead>
<tr>
<th>Statements</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given: (\angle A = \angle B) (\angle A = \angle C)</td>
<td></td>
</tr>
<tr>
<td>Prove: (\angle B = \angle C)</td>
<td></td>
</tr>
</tbody>
</table>

Diagram: Triangle ABC with \(\angle A\) at point A, \(\angle B\) at point B, and \(\angle C\) at point C.
Theorem 17 - If segments (or \angles) are \cong to segments (or \angles), they are \cong to each other (Transitive Property of \cong Segments or \angles - Version 2).

Given: $\angle A \cong \angle X$
$\angle B \cong \angle Y$
$\angle X \cong \angle Y$

Prove: $\angle A \cong \angle B$
Theorem 18 - Vertical Angles are \cong

Given: Diagram as shown.
Prove: $\angle 1 \cong \angle 3$